Skip to contents

Mutating joins add columns from y to x, matching observations based on the keys.

Usage

# S3 method for class 'RPolarsDataFrame'
left_join(
  x,
  y,
  by = NULL,
  copy = FALSE,
  suffix = c(".x", ".y"),
  ...,
  keep = NULL,
  na_matches = "na",
  relationship = NULL
)

# S3 method for class 'RPolarsDataFrame'
right_join(
  x,
  y,
  by = NULL,
  copy = FALSE,
  suffix = c(".x", ".y"),
  ...,
  keep = NULL,
  na_matches = "na",
  relationship = NULL
)

# S3 method for class 'RPolarsDataFrame'
full_join(
  x,
  y,
  by = NULL,
  copy = FALSE,
  suffix = c(".x", ".y"),
  ...,
  keep = NULL,
  na_matches = "na",
  relationship = NULL
)

# S3 method for class 'RPolarsDataFrame'
inner_join(
  x,
  y,
  by = NULL,
  copy = FALSE,
  suffix = c(".x", ".y"),
  ...,
  keep = NULL,
  na_matches = "na",
  relationship = NULL
)

# S3 method for class 'RPolarsLazyFrame'
left_join(
  x,
  y,
  by = NULL,
  copy = FALSE,
  suffix = c(".x", ".y"),
  ...,
  keep = NULL,
  na_matches = "na",
  relationship = NULL
)

# S3 method for class 'RPolarsLazyFrame'
right_join(
  x,
  y,
  by = NULL,
  copy = FALSE,
  suffix = c(".x", ".y"),
  ...,
  keep = NULL,
  na_matches = "na",
  relationship = NULL
)

# S3 method for class 'RPolarsLazyFrame'
full_join(
  x,
  y,
  by = NULL,
  copy = FALSE,
  suffix = c(".x", ".y"),
  ...,
  keep = NULL,
  na_matches = "na",
  relationship = NULL
)

# S3 method for class 'RPolarsLazyFrame'
inner_join(
  x,
  y,
  by = NULL,
  copy = FALSE,
  suffix = c(".x", ".y"),
  ...,
  keep = NULL,
  na_matches = "na",
  relationship = NULL
)

Arguments

x, y

Two Polars Data/LazyFrames

by

Variables to join by. If NULL (default), *_join() will perform a natural join, using all variables in common across x and y. A message lists the variables so that you can check they're correct; suppress the message by supplying by explicitly.

by can take a character vector, like c("x", "y") if x and y are in both datasets. To join on variables that don't have the same name, use equalities in the character vector, like c("x1" = "x2", "y"). If you use a character vector, the join can only be done using strict equality.

by can also be a specification created by dplyr::join_by(). Contrary to the input as character vector shown above, join_by() uses unquoted column names, e.g join_by(x1 == x2, y).

Finally, inner_join() also supports inequality joins, e.g. join_by(x1 >= x2), and the helpers between(), overlaps(), and within(). See the documentation of dplyr::join_by() for more information. Other join types will likely support inequality joins in the future.

copy, keep

Not supported.

suffix

If there are non-joined duplicate variables in x and y, these suffixes will be added to the output to disambiguate them. Should be a character vector of length 2.

...

Dots which should be empty.

na_matches

Should two NA values match?

  • "na", the default, treats two NA values as equal.

  • "never" treats two NA values as different and will never match them together or to any other values.

Note that when joining Polars Data/LazyFrames, NaN are always considered equal, no matter the value of na_matches. This differs from the original dplyr implementation.

relationship

Handling of the expected relationship between the keys of x and y. Must be one of the following:

  • NULL, the default, is equivalent to "many-to-many". It doesn't expect any relationship between x and y.

  • "one-to-one" expects each row in x to match at most 1 row in y and each row in y to match at most 1 row in x.

  • "one-to-many" expects each row in y to match at most 1 row in x.

  • "many-to-one" expects each row in x matches at most 1 row in y.

Unknown arguments

Arguments that are supported by the original implementation in the tidyverse but are not listed above will throw a warning by default if they are specified. To change this behavior to error instead, use options(tidypolars_unknown_args = "error").

Examples

test <- polars::pl$DataFrame(
  x = c(1, 2, 3),
  y1 = c(1, 2, 3),
  z = c(1, 2, 3)
)

test2 <- polars::pl$DataFrame(
  x = c(1, 2, 4),
  y2 = c(1, 2, 4),
  z2 = c(4, 5, 7)
)

test
#> shape: (3, 3)
#> ┌─────┬─────┬─────┐
#> │ x   ┆ y1  ┆ z   │
#> │ --- ┆ --- ┆ --- │
#> │ f64 ┆ f64 ┆ f64 │
#> ╞═════╪═════╪═════╡
#> │ 1.0 ┆ 1.0 ┆ 1.0 │
#> │ 2.0 ┆ 2.0 ┆ 2.0 │
#> │ 3.0 ┆ 3.0 ┆ 3.0 │
#> └─────┴─────┴─────┘

test2
#> shape: (3, 3)
#> ┌─────┬─────┬─────┐
#> │ x   ┆ y2  ┆ z2  │
#> │ --- ┆ --- ┆ --- │
#> │ f64 ┆ f64 ┆ f64 │
#> ╞═════╪═════╪═════╡
#> │ 1.0 ┆ 1.0 ┆ 4.0 │
#> │ 2.0 ┆ 2.0 ┆ 5.0 │
#> │ 4.0 ┆ 4.0 ┆ 7.0 │
#> └─────┴─────┴─────┘

# default is to use common columns, here "x" only
left_join(test, test2)
#> Joining by `x`
#> shape: (3, 5)
#> ┌─────┬─────┬─────┬──────┬──────┐
#> │ x   ┆ y1  ┆ z   ┆ y2   ┆ z2   │
#> │ --- ┆ --- ┆ --- ┆ ---  ┆ ---  │
#> │ f64 ┆ f64 ┆ f64 ┆ f64  ┆ f64  │
#> ╞═════╪═════╪═════╪══════╪══════╡
#> │ 1.0 ┆ 1.0 ┆ 1.0 ┆ 1.0  ┆ 4.0  │
#> │ 2.0 ┆ 2.0 ┆ 2.0 ┆ 2.0  ┆ 5.0  │
#> │ 3.0 ┆ 3.0 ┆ 3.0 ┆ null ┆ null │
#> └─────┴─────┴─────┴──────┴──────┘

# we can specify the columns on which to join with join_by()...
left_join(test, test2, by = join_by(x, y1 == y2))
#> shape: (3, 4)
#> ┌─────┬─────┬─────┬──────┐
#> │ x   ┆ y1  ┆ z   ┆ z2   │
#> │ --- ┆ --- ┆ --- ┆ ---  │
#> │ f64 ┆ f64 ┆ f64 ┆ f64  │
#> ╞═════╪═════╪═════╪══════╡
#> │ 1.0 ┆ 1.0 ┆ 1.0 ┆ 4.0  │
#> │ 2.0 ┆ 2.0 ┆ 2.0 ┆ 5.0  │
#> │ 3.0 ┆ 3.0 ┆ 3.0 ┆ null │
#> └─────┴─────┴─────┴──────┘

# ... or with a character vector
left_join(test, test2, by = c("x", "y1" = "y2"))
#> shape: (3, 4)
#> ┌─────┬─────┬─────┬──────┐
#> │ x   ┆ y1  ┆ z   ┆ z2   │
#> │ --- ┆ --- ┆ --- ┆ ---  │
#> │ f64 ┆ f64 ┆ f64 ┆ f64  │
#> ╞═════╪═════╪═════╪══════╡
#> │ 1.0 ┆ 1.0 ┆ 1.0 ┆ 4.0  │
#> │ 2.0 ┆ 2.0 ┆ 2.0 ┆ 5.0  │
#> │ 3.0 ┆ 3.0 ┆ 3.0 ┆ null │
#> └─────┴─────┴─────┴──────┘

# we can customize the suffix of common column names not used to join
test2 <- polars::pl$DataFrame(
  x = c(1, 2, 4),
  y1 = c(1, 2, 4),
  z = c(4, 5, 7)
)

left_join(test, test2, by = "x", suffix = c("_left", "_right"))
#> shape: (3, 5)
#> ┌─────┬─────────┬────────┬──────────┬─────────┐
#> │ x   ┆ y1_left ┆ z_left ┆ y1_right ┆ z_right │
#> │ --- ┆ ---     ┆ ---    ┆ ---      ┆ ---     │
#> │ f64 ┆ f64     ┆ f64    ┆ f64      ┆ f64     │
#> ╞═════╪═════════╪════════╪══════════╪═════════╡
#> │ 1.0 ┆ 1.0     ┆ 1.0    ┆ 1.0      ┆ 4.0     │
#> │ 2.0 ┆ 2.0     ┆ 2.0    ┆ 2.0      ┆ 5.0     │
#> │ 3.0 ┆ 3.0     ┆ 3.0    ┆ null     ┆ null    │
#> └─────┴─────────┴────────┴──────────┴─────────┘

# the argument "relationship" ensures the join matches the expectation
country <- polars::pl$DataFrame(
  iso = c("FRA", "DEU"),
  value = 1:2
)
country
#> shape: (2, 2)
#> ┌─────┬───────┐
#> │ iso ┆ value │
#> │ --- ┆ ---   │
#> │ str ┆ i32   │
#> ╞═════╪═══════╡
#> │ FRA ┆ 1     │
#> │ DEU ┆ 2     │
#> └─────┴───────┘

country_year <- polars::pl$DataFrame(
  iso = rep(c("FRA", "DEU"), each = 2),
  year = rep(2019:2020, 2),
  value2 = 3:6
)
country_year
#> shape: (4, 3)
#> ┌─────┬──────┬────────┐
#> │ iso ┆ year ┆ value2 │
#> │ --- ┆ ---  ┆ ---    │
#> │ str ┆ i32  ┆ i32    │
#> ╞═════╪══════╪════════╡
#> │ FRA ┆ 2019 ┆ 3      │
#> │ FRA ┆ 2020 ┆ 4      │
#> │ DEU ┆ 2019 ┆ 5      │
#> │ DEU ┆ 2020 ┆ 6      │
#> └─────┴──────┴────────┘

# We expect that each row in "x" matches only one row in "y" but, it's not
# true as each row of "x" matches two rows of "y"
tryCatch(
  left_join(country, country_year, join_by(iso), relationship = "one-to-one"),
  error = function(e) e
)
#> <RPolarsErr_error: Execution halted with the following contexts
#>    0: In R: in $collect():
#>    0: During function call [pkgdown::build_site_github_pages(new_process = FALSE, install = TRUE)]
#>    1: Encountered the following error in Rust-Polars:
#>       	join keys did not fulfill 1:1 validation
#> >

# A correct expectation would be "one-to-many":
left_join(country, country_year, join_by(iso), relationship = "one-to-many")
#> shape: (4, 4)
#> ┌─────┬───────┬──────┬────────┐
#> │ iso ┆ value ┆ year ┆ value2 │
#> │ --- ┆ ---   ┆ ---  ┆ ---    │
#> │ str ┆ i32   ┆ i32  ┆ i32    │
#> ╞═════╪═══════╪══════╪════════╡
#> │ FRA ┆ 1     ┆ 2019 ┆ 3      │
#> │ FRA ┆ 1     ┆ 2020 ┆ 4      │
#> │ DEU ┆ 2     ┆ 2019 ┆ 5      │
#> │ DEU ┆ 2     ┆ 2020 ┆ 6      │
#> └─────┴───────┴──────┴────────┘