Skip to contents

Pivot a DataFrame from long to wide

Usage

# S3 method for class 'RPolarsDataFrame'
pivot_wider(
  data,
  ...,
  id_cols = NULL,
  names_from = name,
  values_from = value,
  names_prefix = "",
  names_sep = "_",
  names_glue = NULL,
  values_fill = NULL
)

Arguments

data

A Polars DataFrame (LazyFrames are not supported).

...

Dots which should be empty.

id_cols

A set of columns that uniquely identify each observation. Typically used when you have redundant variables, i.e. variables whose values are perfectly correlated with existing variables.

Defaults to all columns in data except for the columns specified through names_from and values_from. If a tidyselect expression is supplied, it will be evaluated on data after removing the columns specified through names_from and values_from.

names_from

The (quoted or unquoted) column names whose values will be used for the names of the new columns.

values_from

The (quoted or unquoted) column names whose values will be used to fill the new columns.

names_prefix

String added to the start of every variable name. This is particularly useful if names_from is a numeric vector and you want to create syntactic variable names.

names_sep

If names_from or values_from contains multiple variables, this will be used to join their values together into a single string to use as a column name.

names_glue

Instead of names_sep and names_prefix, you can supply a glue specification that uses the names_from columns to create custom column names.

values_fill

A scalar that will be used to replace missing values in the new columns. Note that the type of this value will be applied to new columns. For example, if you provide a character value to fill numeric columns, then all these columns will be converted to character.

Unknown arguments

Arguments that are supported by the original implementation in the tidyverse but are not listed above will throw a warning by default if they are specified. To change this behavior to error instead, use options(tidypolars_unknown_args = "error").

Examples

pl_fish_encounters <- polars::pl$DataFrame(tidyr::fish_encounters)
#> Warning: Passing a `data.frame` or `RPolarsDataFrame` to `pl$DataFrame()` is deprecated and will be removed in the future. Use `as_polars_df()` instead.

pl_fish_encounters |>
  pivot_wider(names_from = station, values_from = seen)
#> shape: (19, 12)
#> ┌──────┬─────────┬───────┬────────┬───┬──────┬──────┬──────┬──────┐
#> │ fish ┆ Release ┆ I80_1 ┆ Lisbon ┆ … ┆ BCE2 ┆ BCW2 ┆ MAE  ┆ MAW  │
#> │ ---  ┆ ---     ┆ ---   ┆ ---    ┆   ┆ ---  ┆ ---  ┆ ---  ┆ ---  │
#> │ cat  ┆ i32     ┆ i32   ┆ i32    ┆   ┆ i32  ┆ i32  ┆ i32  ┆ i32  │
#> ╞══════╪═════════╪═══════╪════════╪═══╪══════╪══════╪══════╪══════╡
#> │ 4842 ┆ 1       ┆ 1     ┆ 1      ┆ … ┆ 1    ┆ 1    ┆ 1    ┆ 1    │
#> │ 4843 ┆ 1       ┆ 1     ┆ 1      ┆ … ┆ 1    ┆ 1    ┆ 1    ┆ 1    │
#> │ 4844 ┆ 1       ┆ 1     ┆ 1      ┆ … ┆ 1    ┆ 1    ┆ 1    ┆ 1    │
#> │ 4845 ┆ 1       ┆ 1     ┆ 1      ┆ … ┆ null ┆ null ┆ null ┆ null │
#> │ 4847 ┆ 1       ┆ 1     ┆ 1      ┆ … ┆ null ┆ null ┆ null ┆ null │
#> │ …    ┆ …       ┆ …     ┆ …      ┆ … ┆ …    ┆ …    ┆ …    ┆ …    │
#> │ 4861 ┆ 1       ┆ 1     ┆ 1      ┆ … ┆ 1    ┆ 1    ┆ 1    ┆ 1    │
#> │ 4862 ┆ 1       ┆ 1     ┆ 1      ┆ … ┆ 1    ┆ 1    ┆ null ┆ null │
#> │ 4863 ┆ 1       ┆ 1     ┆ null   ┆ … ┆ null ┆ null ┆ null ┆ null │
#> │ 4864 ┆ 1       ┆ 1     ┆ null   ┆ … ┆ null ┆ null ┆ null ┆ null │
#> │ 4865 ┆ 1       ┆ 1     ┆ 1      ┆ … ┆ null ┆ null ┆ null ┆ null │
#> └──────┴─────────┴───────┴────────┴───┴──────┴──────┴──────┴──────┘

pl_fish_encounters |>
  pivot_wider(names_from = station, values_from = seen, values_fill = 0)
#> shape: (19, 12)
#> ┌──────┬─────────┬───────┬────────┬───┬──────┬──────┬─────┬─────┐
#> │ fish ┆ Release ┆ I80_1 ┆ Lisbon ┆ … ┆ BCE2 ┆ BCW2 ┆ MAE ┆ MAW │
#> │ ---  ┆ ---     ┆ ---   ┆ ---    ┆   ┆ ---  ┆ ---  ┆ --- ┆ --- │
#> │ cat  ┆ f64     ┆ f64   ┆ f64    ┆   ┆ f64  ┆ f64  ┆ f64 ┆ f64 │
#> ╞══════╪═════════╪═══════╪════════╪═══╪══════╪══════╪═════╪═════╡
#> │ 4842 ┆ 1.0     ┆ 1.0   ┆ 1.0    ┆ … ┆ 1.0  ┆ 1.0  ┆ 1.0 ┆ 1.0 │
#> │ 4843 ┆ 1.0     ┆ 1.0   ┆ 1.0    ┆ … ┆ 1.0  ┆ 1.0  ┆ 1.0 ┆ 1.0 │
#> │ 4844 ┆ 1.0     ┆ 1.0   ┆ 1.0    ┆ … ┆ 1.0  ┆ 1.0  ┆ 1.0 ┆ 1.0 │
#> │ 4845 ┆ 1.0     ┆ 1.0   ┆ 1.0    ┆ … ┆ 0.0  ┆ 0.0  ┆ 0.0 ┆ 0.0 │
#> │ 4847 ┆ 1.0     ┆ 1.0   ┆ 1.0    ┆ … ┆ 0.0  ┆ 0.0  ┆ 0.0 ┆ 0.0 │
#> │ …    ┆ …       ┆ …     ┆ …      ┆ … ┆ …    ┆ …    ┆ …   ┆ …   │
#> │ 4861 ┆ 1.0     ┆ 1.0   ┆ 1.0    ┆ … ┆ 1.0  ┆ 1.0  ┆ 1.0 ┆ 1.0 │
#> │ 4862 ┆ 1.0     ┆ 1.0   ┆ 1.0    ┆ … ┆ 1.0  ┆ 1.0  ┆ 0.0 ┆ 0.0 │
#> │ 4863 ┆ 1.0     ┆ 1.0   ┆ 0.0    ┆ … ┆ 0.0  ┆ 0.0  ┆ 0.0 ┆ 0.0 │
#> │ 4864 ┆ 1.0     ┆ 1.0   ┆ 0.0    ┆ … ┆ 0.0  ┆ 0.0  ┆ 0.0 ┆ 0.0 │
#> │ 4865 ┆ 1.0     ┆ 1.0   ┆ 1.0    ┆ … ┆ 0.0  ┆ 0.0  ┆ 0.0 ┆ 0.0 │
#> └──────┴─────────┴───────┴────────┴───┴──────┴──────┴─────┴─────┘

# be careful about the type of the replacement value!
pl_fish_encounters |>
  pivot_wider(names_from = station, values_from = seen, values_fill = "a")
#> shape: (19, 12)
#> ┌──────┬─────────┬───────┬────────┬───┬──────┬──────┬─────┬─────┐
#> │ fish ┆ Release ┆ I80_1 ┆ Lisbon ┆ … ┆ BCE2 ┆ BCW2 ┆ MAE ┆ MAW │
#> │ ---  ┆ ---     ┆ ---   ┆ ---    ┆   ┆ ---  ┆ ---  ┆ --- ┆ --- │
#> │ cat  ┆ str     ┆ str   ┆ str    ┆   ┆ str  ┆ str  ┆ str ┆ str │
#> ╞══════╪═════════╪═══════╪════════╪═══╪══════╪══════╪═════╪═════╡
#> │ 4842 ┆ 1       ┆ 1     ┆ 1      ┆ … ┆ 1    ┆ 1    ┆ 1   ┆ 1   │
#> │ 4843 ┆ 1       ┆ 1     ┆ 1      ┆ … ┆ 1    ┆ 1    ┆ 1   ┆ 1   │
#> │ 4844 ┆ 1       ┆ 1     ┆ 1      ┆ … ┆ 1    ┆ 1    ┆ 1   ┆ 1   │
#> │ 4845 ┆ 1       ┆ 1     ┆ 1      ┆ … ┆ a    ┆ a    ┆ a   ┆ a   │
#> │ 4847 ┆ 1       ┆ 1     ┆ 1      ┆ … ┆ a    ┆ a    ┆ a   ┆ a   │
#> │ …    ┆ …       ┆ …     ┆ …      ┆ … ┆ …    ┆ …    ┆ …   ┆ …   │
#> │ 4861 ┆ 1       ┆ 1     ┆ 1      ┆ … ┆ 1    ┆ 1    ┆ 1   ┆ 1   │
#> │ 4862 ┆ 1       ┆ 1     ┆ 1      ┆ … ┆ 1    ┆ 1    ┆ a   ┆ a   │
#> │ 4863 ┆ 1       ┆ 1     ┆ a      ┆ … ┆ a    ┆ a    ┆ a   ┆ a   │
#> │ 4864 ┆ 1       ┆ 1     ┆ a      ┆ … ┆ a    ┆ a    ┆ a   ┆ a   │
#> │ 4865 ┆ 1       ┆ 1     ┆ 1      ┆ … ┆ a    ┆ a    ┆ a   ┆ a   │
#> └──────┴─────────┴───────┴────────┴───┴──────┴──────┴─────┴─────┘

# using "names_glue" to specify the names of new columns
production <- expand.grid(
  product = c("A", "B"),
  country = c("AI", "EI"),
  year = 2000:2014
) |>
  filter((product == "A" & country == "AI") | product == "B") |>
  mutate(production = 1:45) |>
  as_polars_df()

production
#> shape: (45, 4)
#> ┌─────────┬─────────┬──────┬────────────┐
#> │ product ┆ country ┆ year ┆ production │
#> │ ---     ┆ ---     ┆ ---  ┆ ---        │
#> │ cat     ┆ cat     ┆ i32  ┆ i32        │
#> ╞═════════╪═════════╪══════╪════════════╡
#> │ A       ┆ AI      ┆ 2000 ┆ 1          │
#> │ B       ┆ AI      ┆ 2000 ┆ 2          │
#> │ B       ┆ EI      ┆ 2000 ┆ 3          │
#> │ A       ┆ AI      ┆ 2001 ┆ 4          │
#> │ B       ┆ AI      ┆ 2001 ┆ 5          │
#> │ …       ┆ …       ┆ …    ┆ …          │
#> │ B       ┆ AI      ┆ 2013 ┆ 41         │
#> │ B       ┆ EI      ┆ 2013 ┆ 42         │
#> │ A       ┆ AI      ┆ 2014 ┆ 43         │
#> │ B       ┆ AI      ┆ 2014 ┆ 44         │
#> │ B       ┆ EI      ┆ 2014 ┆ 45         │
#> └─────────┴─────────┴──────┴────────────┘

production |>
  pivot_wider(
    names_from = c(product, country),
    values_from = production,
    names_glue = "prod_{product}_{country}"
  )
#> shape: (15, 4)
#> ┌──────┬───────────┬───────────┬───────────┐
#> │ year ┆ prod_A_AI ┆ prod_B_AI ┆ prod_B_EI │
#> │ ---  ┆ ---       ┆ ---       ┆ ---       │
#> │ i32  ┆ i32       ┆ i32       ┆ i32       │
#> ╞══════╪═══════════╪═══════════╪═══════════╡
#> │ 2000 ┆ 1         ┆ 2         ┆ 3         │
#> │ 2001 ┆ 4         ┆ 5         ┆ 6         │
#> │ 2002 ┆ 7         ┆ 8         ┆ 9         │
#> │ 2003 ┆ 10        ┆ 11        ┆ 12        │
#> │ 2004 ┆ 13        ┆ 14        ┆ 15        │
#> │ …    ┆ …         ┆ …         ┆ …         │
#> │ 2010 ┆ 31        ┆ 32        ┆ 33        │
#> │ 2011 ┆ 34        ┆ 35        ┆ 36        │
#> │ 2012 ┆ 37        ┆ 38        ┆ 39        │
#> │ 2013 ┆ 40        ┆ 41        ┆ 42        │
#> │ 2014 ┆ 43        ┆ 44        ┆ 45        │
#> └──────┴───────────┴───────────┴───────────┘